skip to main content


Search for: All records

Creators/Authors contains: "Reggente, Nicco"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Memory is inherently context-dependent: internal and environmental cues become bound to learnt information, and the later absence of these cues can impair recall. Here, we developed an approach to leverage context-dependence to optimise learning of challenging, interference-prone material. While navigating through desktop virtual reality (VR) contexts, participants learnt 80 foreign words in two phonetically similar languages. Those participants who learnt each language in its own unique context showed reduced interference and improved one-week retention (92%), relative to those who learnt the languages in the same context (76%)—however, this advantage was only apparent if participants subjectively experienced VR-based contexts as “real” environments. A follow-up fMRI experiment confirmed that reinstatement of brain activity patterns associated with the original encoding context during word retrieval was associated with improved recall performance. These findings establish that context-dependence can be harnessed with VR to optimise learning and showcase the important role of mental context reinstatement.

     
    more » « less
  2. Abstract

    Previous studies have suggested that disorders of consciousness (DOC) after severe brain injury may result from disconnections of the thalamo‐cortical system. However, thalamo‐cortical connectivity differences between vegetative state (VS), minimally conscious state minus (MCS−, i.e., low‐level behavior such as visual pursuit), and minimally conscious state plus (MCS+, i.e., high‐level behavior such as language processing) remain unclear. Probabilistic tractography in a sample of 25 DOC patients was employed to assess whether structural connectivity in various thalamo‐cortical circuits could differentiate between VS, MCS−, and MCS+ patients. First, the thalamus was individually segmented into seven clusters based on patterns of cortical connectivity and tested for univariate differences across groups. Second, reconstructed whole‐brain thalamic tracks were used as features in a multivariate searchlight analysis to identify regions along the tracks that were most informative in distinguishing among groups. At the univariate level, it was found that VS patients displayed reduced connectivity in most thalamo‐cortical circuits of interest, including frontal, temporal, and sensorimotor connections, as compared with MCS+, but showed more pulvinar‐occipital connections when compared with MCS−. Moreover, MCS− exhibited significantly less thalamo‐premotor and thalamo‐temporal connectivity than MCS+. At the multivariate level, it was found that thalamic tracks reaching frontal, parietal, and sensorimotor regions, could discriminate, up to 100% accuracy, across each pairwise group comparison. Together, these findings highlight the role of thalamo‐cortical connections in patients' behavioral profile and level of consciousness. Diffusion tensor imaging combined with machine learning algorithms could thus potentially facilitate diagnostic distinctions in DOC and shed light on the neural correlates of consciousness.Hum Brain Mapp 38:431–443, 2017. ©2016 Wiley Periodicals, Inc.

     
    more » « less